Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex.
نویسندگان
چکیده
Myelin is a defining feature of the vertebrate nervous system. Variability in the thickness of the myelin envelope is a structural feature affecting the conduction of neuronal signals. Conversely, the distribution of myelinated tracts along the length of axons has been assumed to be uniform. Here, we traced high-throughput electron microscopy reconstructions of single axons of pyramidal neurons in the mouse neocortex and built high-resolution maps of myelination. We find that individual neurons have distinct longitudinal distribution of myelin. Neurons in the superficial layers displayed the most diversified profiles, including a new pattern where myelinated segments are interspersed with long, unmyelinated tracts. Our data indicate that the profile of longitudinal distribution of myelin is an integral feature of neuronal identity and may have evolved as a strategy to modulate long-distance communication in the neocortex.
منابع مشابه
Loss of Saltation and Presynaptic Action Potential Failure in Demyelinated Axons
In cortical pyramidal neurons the presynaptic terminals controlling transmitter release are located along unmyelinated axon collaterals, far from the original action potential (AP) initiation site, the axon initial segment (AIS). Once initiated, APs will need to reliably propagate over long distances and regions of geometrical inhomogeneity like branch points (BPs) to rapidly depolarize the pre...
متن کاملA large fraction of neocortical myelin ensheathes axons of local inhibitory neurons
Myelin is best known for its role in increasing the conduction velocity and metabolic efficiency of long-range excitatory axons. Accordingly, the myelin observed in neocortical gray matter is thought to mostly ensheath excitatory axons connecting to subcortical regions and distant cortical areas. Using independent analyses of light and electron microscopy data from mouse neocortex, we show that...
متن کاملSuperficial layer pyramidal cells communicate heterogeneously between multiple functional domains of cat primary visual cortex
The axons of pyramidal neurons in the superficial layers of the neocortex of higher mammals form lateral networks of discrete clusters of synaptic boutons. In primary visual cortex the clusters are reported to link domains that share the same orientation preferences, but how individual neurons contribute to this network is unknown. Here we performed optical imaging to record the intrinsic signa...
متن کاملThe Histological Evidences for Developmental Alternations in the Transmitting Time of Impulses along the Thalamocortical Tract
Change in transmitting time of impulses along axons is traditionally attributed to two parameters: the myelin formation and the diameter of neurite, both rising during the postnatal development. In the previous study, we showed that conduction velocity of the fibers projecting from the thalamus to the layer IV of the somatosensory (barrel) cortex increases as a function of age. However, the con...
متن کاملStructural changes that occur during normal aging of primate cerebral hemispheres.
Human and non-human primates show cognitive decline during normal aging. Originally, the decline was attributed to a loss of cortical neurons, but recent studies have shown there is no significant cortical neuronal loss with age. Neurons acquire pigment, but the only other obvious changes are in layer 1 of neocortex. Layer 1 becomes thinner as apical tufts of pyramidal cells lose branches, as w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 344 6181 شماره
صفحات -
تاریخ انتشار 2014